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We consider the ferromagnetic large-q state Potts model in complex evolving networks, which is equivalent
to an optimal cooperation problem, in which the agents try to optimize the total sum of pair cooperation
benefits and the supports of independent projects. The agents are found to be typically of two kinds: A fraction
of m �being the magnetization of the Potts model� belongs to a large cooperating cluster, whereas the others are
isolated one man’s projects. It is shown rigorously that the homogeneous model has a strongly first-order phase
transition, which turns to second-order for random interactions �benefits�, the properties of which are studied
numerically on the Barabási-Albert network. The distribution of finite-size transition points is characterized by
a shift exponent, 1 / �̃�=0.26�1�, and by a different width exponent, 1 /��=0.18�1�, whereas the magnetization
at the transition point scales with the size of the network, N, as m�N−x, with x=0.66�1�.
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I. INTRODUCTION

Complex networks have been used to describe the struc-
ture and topology of a large class of systems in different
fields of science, technics, transport, social and political life,
etc.; see Refs. �1–4� for recent reviews. A complex network
is represented by a graph �5�, in which the nodes stand for
the agents and the edges denote the possible interactions.
Realistic networks generally have three basic properties. The
average distance between the nodes is small, which is called
the small-world effect �6�. There is a tendency of clustering
and the degree distribution of the edges, PD�k�, has a power-
law tail, PD�k��Ak−�, k�1. Thus the edge distribution is
scale free �7�, which is usually attributed to growth and pref-
erential attachment during the evolution of the network.

In reality there is some sort of interaction between the
agents of a network which leads to some kind of cooperative
behavior in macroscopic scales. One thoroughly studied
question in this field is the spread of infections and epidem-
ics in networks �8–10�; this problem is closely related to
other nonequilibrium processes, such as percolation �11�, dif-
fusion �12�, the contact process �13� or the zero-range pro-
cess �14�, etc. In another investigation one considers simple
magnetic models �15–19�, in which the agents are repre-
sented by classical �Ising or Potts� spin variables; the inter-
actions are described by ferromagnetic couplings, whereas
the temperature plays the role of a disordering field.

In theoretical investigations of the cooperative behavior
one usually resorts to some kind of approximations. For ex-
ample, the sites of the networks are often considered uncor-
related, which is generally not true for evolving networks,
such as the Barabási-Albert �BA� network. However, this
effect is expected to be irrelevant, as far as the singularities
in the system are considered. Also the simple mean-field ap-
proach could lead to exact results due to long-range interac-
tions in the networks, which has been checked by numerical
simulations �15� and by other, more accurate theoretical
methods �19� �Bethe-lattice approach, replica method, etc.�.
In these calculations the critical behavior of the network is

found to depend on the value of the degree exponent, �. For
sufficiently weakly connected networks with ���u ��u=5
for the Ising model� there are conventional mean-field singu-
larities. In the intermediate or unconventional mean-field re-
gime, for �u����c, the critical exponents are � dependent.
Finally, for ���c, when the average of k2, defined by �k2�
=	PD�k�k2dk, as well as the strength of the average interac-
tion, becomes divergent the scale-free network remains in
the ordered state at any finite temperature. Since �c=3, in
realistic networks with homogeneous interactions this type of
phenomena is always expected to occur. In weighted net-
works, however, in which the strength of the interaction is
appropriately rescaled with the degrees of the connected ver-
tices, �c is shifted to larger values and therefore the complete
phase-transition scenario can be tested �13,19�. We note that
the properties of the phase transitions are generally different
for undirected �as we consider here� and directed networks
�20�.

In several models the phase transition in regular lattices is
of first order, such as for the q-state Potts model for suffi-
ciently large values of q. Putting these models on a complex
network the inhomogeneities of the lattice play the role of
some kind of disorder and it is expected that the value of the
latent heat is reduced or even the transition is smoothened to
a continuous one. This type of scenario is indeed found in a
mean-field treatment �17�, in which the transition is of first
order for ����q� and becomes continuous for �c��
���q�, where 3���q��4. On the other hand, in an effec-
tive medium Bethe lattice approach, one has obtained ��q�
=3; thus the unconventional mean-field regime is absent in
this treatment �18�.

The interactions considered so far were homogeneous,
however, in realistic situations the disorder is inevitable,
which has a strong influence on the properties of the phase
transition. In regular lattices and for a second-order transition
Harris-type relevance-irrelevance criterion can be used to de-
cide about the stability of the pure system’s fixed point in the
presence of weak disorder. On the contrary, for a first-order
transition such type of criterion does not exist. In this case
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rigorous results assert that in two dimensions �2D� for any
type of continuous disorder the originally first order transi-
tion softens into a second order one �21�. In three dimensions
there are numerical investigations which have shown
�22–26� that this kind of softening takes place only for suf-
ficiently strong disorder.

In this paper we consider interacting models with random
interactions on complex networks and in this way we study
the combined effect of network topology and bond disorder.
The particular model we consider is the random bond ferro-
magnetic Potts model �RBPM� for large values of q. This
model besides its relevance in ordering-disordering phenom-
ena and phase transitions has an exact relation with an opti-
mal cooperation problem �27�. This mapping is based on the
observation that in the large-q limit the thermodynamic prop-
erties of the system are dominated by one single diagram
�28� of the high-temperature expansion �29� and its calcula-
tion is equivalent to the solution of an optimization problem.
This optimization problem can be interpreted in terms of
cooperating agents which try to maximize the total sum of
benefits received for pair cooperations plus a unit support
which is paid for each independent project. For a given re-
alization of the interactions the optimal state is calculated
exactly by a combinatorial optimization algorithm which
works in strongly polynomial time �27�. The optimal graph
of this problem consists of connected components �represent-
ing sets of cooperating agents� and isolated sites and its tem-
perature �support� dependent topology contains information
about the collective behavior of the agents. In the thermody-
namic limit one expects to have a sharp phase transition in
the system, which separates the ordered �cooperating� phase
with a giant cluster from a disordered �noncooperating�
phase, having only clusters of finite extent.

The structure of the paper is the following. The model and
the optimization method used in the study for large q is
presented in Sec. II. The solution for homogeneous nonran-
dom evolving networks can be found in Sec. III, whereas
numerical study of the random model on the Barabási-Albert
network is presented in Sec. IV. Our results are discussed in
Sec. V.

II. MODEL AND ITS RELATION WITH OPTIMAL
COOPERATION

The q-state Potts model �30� is defined by the Hamil-
tonian

H = − 

�i,j�

Jij���i,� j� �1�

in terms of the Potts-spin variables, �i=0,1 , . . . ,q−1. Here i
and j are sites of a lattice, which is represented by a complex
network in our case and the summation runs over nearest
neighbors, i.e., pairs of connected sites.

The couplings, Jij �0, are ferromagnetic and they are ei-
ther identical, Jij =J, which is the case of homogeneous net-
works, or they are identically and independently distributed
random variables. In this paper, we use a quasicontinuous
distribution

P�Jij� =
1

l


i=1

l

��J�1 + 	
2i − l − 1

2l
 − Jij� , �2�

which consists of a large number l of equally spaced discrete
values within the range J�1±	 /2� and 0�	�2 measures
the strength of disorder.

For a given set of couplings the partition function of the
system is convenient to write in the random cluster represen-
tation �29� as

Z = 

G

qc�G� �
ij�G

�q
Jij − 1� , �3�

where the sum runs over all subset of bonds G and c�G�
stands for the number of connected components of G. In Eq.
�3� we use the reduced temperature T→T ln q and its inverse

→
 / ln q, which are of O�1� even in the large-q limit �31�.
In this limit we have q
Jij�1 and the partition function can
be written as

Z = 

G�E

q��G�, ��G� = c�G� + 
 

ij�G

Jij , �4�

which is dominated by the largest term, ��=maxG��G�.
Note that this graph, which is called the optimal set, gener-
ally depends on the temperature. The free-energy per site is
proportional to �� and given by −
f =�� /N where N stands
for the number of sites of the lattice.

As already mentioned in the Introduction, the optimiza-
tion in Eq. �4� can be interpreted as an optimal cooperation
problem �27� in which the agents, which cooperate with each
other in some projects, form connected components. Each
cooperating pair receives a benefit represented by the weight
of the connecting edge �which is proportional to the inverse
temperature� and also there is a unit support to each compo-
nent, i.e., for each project. Thus by uniting two projects the
support will be reduced but at the same time the edge ben-
efits will be enhanced. Finally, one is interested in the opti-
mal form of cooperation when the total value of the project
grants is maximal.

From a mathematical point of view, the cost function in
Eq. �4�, −��G�, is submodular �32� and there is an efficient
combinatorial optimization algorithm which calculates the
optimal set �i.e., set of bonds which minimizes the cost func-
tion� exactly at any temperature in strongly polynomial time
�27�. In the algorithm the optimal set is calculated iteratively
and at each step one new vertex of the lattice is taken into
account. Having the optimal set at a given step, say with n
vertices, its connected components have the property to con-
tain all the edges between their sites. Due to the submodu-
larity of −��G� each connected component is contracted into
a new vertex with effective weights being the sum of indi-
vidual weights in the original representation. Now adding a
new vertex one should solve the optimization problem in
terms of the effective vertices, which needs the application of
a standard maximum flow algorithm, since any contractions
should include the new vertex. After making the possible
new contractions one repeats the previous steps until all the
vertices are taken into account and the optimal set of the
problem is found.
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This method has already been applied for 2D �31,33� and
3D �25,26� regular lattices with short range random interac-
tions. As a general result, the optimal graph at low tempera-
tures is compact and the largest connected subgraph contains
a finite fraction of the sites, m�T�, which is identified by the
order parameter of the system. In the other limit, for high
temperature, most of the sites in the optimal set are isolated
and the connected clusters have a finite extent, the typical
size of which is used to define the correlation length, �. Be-
tween the two phases there is a sharp phase transition in the
thermodynamic limit, the order of which depends on the di-
mension of the lattice and the strength of disorder, 	.

In the following, the optimization problem is solved ex-
actly for homogeneous evolving networks in Sec. III and
studied numerically in random Barabási-Albert networks in
Sec. IV.

III. EXACT SOLUTION FOR HOMOGENEOUS
EVOLVING NETWORKS

In regular d-dimensional lattices the solution of the opti-
mization problem in Eq. �4� is simple, since there are only
two distinct optimal sets, which correspond to the T=0 and
T→ solutions, respectively. For T�Tc

�0� it is the fully con-
nected diagram, E, with a free energy −
Nf =1+N
Jd and
for T�Tc

�0� it is the empty diagram, �, with −
Nf =N. �The
superscript in Tc

�0� is related to the nonrandom system, i.e.,
when the strength of disorder in Eq. �2� is 	=0.� In the proof
we make use of the fact that any edge of a regular lattice, e1,
can be transformed to any another edge, e2, through opera-
tions of the automorphy group of the lattice. Thus if e1 be-
longs to some optimal set, then e2 belongs to an optimal set,
too. Furthermore, due to submodularity the union of optimal
sets is also an optimal set, from which follows that at any
temperature the optimal set is either � or E. By equating the
free energies in the two phases we obtain, for the position of
the transition point, Tc

�0�=Jd / �1−1/N�, whereas the latent
heat is maximal: 	e /Tc

�0�=1−1/N.
In the following, we consider the optimization problem in

homogeneous evolving networks which are generated by the
following rules: We start with a complete graph with 2�
vertices; at each time step we add a new vertex; which is
connected to � existing vertices.

In definition of these networks there is no restriction to
which way the � existing vertices are selected. These could
be chosen randomly, as in the Erdős-Rényi model �34�, or
one can follow some defined rule, like the preferential attach-
ment in the BA network �7�. In the following we show that
for such networks the phase-transition point is located at
Tc

�0�=J� and for T�Tc
�0� �T�Tc

�0�� the optimal set is the fully
connected diagram �empty diagram�, as for the regular lat-
tices. Furthermore, the latent heat is maximal: 	e /Tc

�0�=1.
In the proof we follow the optimal cooperation algorithm

�27� outlined in Sec. II, and in application of the algorithm
we add the vertices one by one in the same order as in the
construction of the network. First we note that the statement
is true for the initial graph, which is a complete graph; thus
the optimal set can be either fully connected, having a free-

energy −
2�f =1+��2�−1�
J, or empty, having a free en-
ergy −
2�f =2�. Thus the transition point is indeed at T
=Tc

�0�. We suppose then that the property is satisfied after n
steps and add a new vertex, v0. Here we investigate the two
cases, T�Tc

�0� and T�Tc
�0�, separately.

If T�Tc
�0�, then according to our statement all vertices of

the original graph are contracted into a single vertex, s,
which has an effective weight, ��J /T��J /Tc

�0�=1, to the
new vertex, v0. Consequently in the optimal set s and v0 are
connected, in accordance with our statement.

If T�Tc
�0�, then all vertices of the original graph are dis-

connected, which means that for any subset, S, having ns
�n vertices and es edges, one has ns�esJT+1. Let us de-
note by �s�� the number of edges between v0 and the
vertices of S. One has �sJ /T��J /T��J /Tc

�0�=1, so that
for the composite S+v0 we have ns+1�esJT+1+�sJ /T,
which proves that the vertex v0 will not be connected to any
subset S and thus will not be contracted to any vertex.

This result, i.e., a maximally first-order transition of the
large-q state Potts model holds for a wide class of evolving
networks which satisfy the construction rules presented
above. This is true, among others, for randomly selected
sites, for the BA evolving network which has a degree expo-
nent �=3, and for several generalizations of the BA network
�1� including nonlinear preferential attachment, initial attrac-
tiveness, etc. In these latter network models the degree ex-
ponent can vary in a range of 2���. It is interesting to
note that for uncorrelated random networks with a given de-
gree distribution the q-state Potts model is in the ordered
phase �17,18� for any ��3. This is in contrast to evolving
networks in which correlations in the network sites result in
the existence of a disordered phase for T�Tc

�0�, at least for
large q.

IV. NUMERICAL STUDY OF RANDOM
BARABÁSI-ALBERT NETWORKS

In this section, we study the large-q state Potts model in
the BA network with a given value of the connectivity, �
=2, and the size of the network varies between N=26 to N
=212. The interactions are independent random variables
taken from the quasicontinuous distribution in Eq. �2� having
l=1024 discrete peaks and we fix J=1. The advantage of
using quasicontinuous distributions is that in this way we
avoid extra, nonphysical singularities, which could appear
for discrete �e.g., bimodal� distributions �31�. For a given
size we have generated 100 independent networks and for
each we have 100 independent realizations of the disordered
couplings.

A. Magnetization and structure of the optimal set

In Fig. 1 the temperature dependence of the average mag-
netization is shown for various strength of disorder, 	, for a
BA network of N=1024 sites. It is seen that the sharp first-
order phase transition of the pure system with 	=0 is
rounded and the magnetization has considerable variation
within a temperature range of �	. The phase transition
seems to be continuous even for weak disorder. Close to the

ROUNDING OF FIRST-ORDER PHASE TRANSITIONS AND … PHYSICAL REVIEW E 76, 041107 �2007�

041107-3



transition point the magnetization curves for uniform disor-
der �	=2� are presented in the inset of Fig. 1, which are
calculated for different finite systems.

Some features of the magnetization curves and the prop-
erties of the phase transition can be understood by analyzing
the structure of the optimal set. For low enough temperature
this optimal set is fully connected, i.e., the magnetization is
m=1, which happens for T�Tc

�0�−	. Indeed, the first sites
with k=�=2 �i.e., those which have only outgoing edges�
are removed from the fully connected diagram, if the sum of
the connected bonds is 
i=1

� Ji�T, which happens within the
temperature range indicated above. From a similar analysis
follows that the optimal set is empty for any finite system for
T�Tc

�0�+	. The magnetization can be estimated for t=T
− �Tc

�0�−	��1 and the correction is given by 1−m� t�. For
the numerically studied model with �=2 and 	=2, we have
m�T��1−T2 /8, which is indeed a good approximation for
T�1. In the temperature range Tc

�0�−	�T�Tc
�0�+	 typi-

cally the sites are either isolated or belong to the largest
cluster. There are also some clusters with an intermediate
size, which are dominantly two-site clusters for T�Tc

�0� and
their fraction is less than 1%, as shown in Fig. 2. The frac-
tion of two-site clusters for 	=2 and T�Tc

�0�=2 can be es-
timated as follows. First, we note that since they are not a
part of the biggest cluster they can be taken out of a fraction
of p1=1−m�T� sites. Before being disconnected a two-site
cluster has typically three bonds to the biggest cluster, de-
noted by J1, J2, and J3. When it becomes disconnected we
have J1+J2+J3�T, which happens with a probability p2
=T3 /48. At the same time the coupling within the two-site
cluster should be J4�T, which happens with probability p3
= �2−T� /2. Thus the fraction of two-site clusters is approxi-
mately n2� p1� p2� p3�T5�2−T� /768, which describes
well the general behavior of the distribution in Fig. 2.

In the temperature range T�Tc
�0� the intermediate clusters

have at least three sites and their fraction is negligible, which
is seen in Fig. 2. Consequently, the intermediate size clusters
do not influence the properties of the phase transition in the

system. In the ordered phase, T�Tc, the largest connected
cluster contains a finite fraction of m�T��1 of the sites. We
have analyzed the degree distribution of this connected giant
cluster in Fig. 3, which has scale-free behavior, and for any
temperature T�Tc there is the same degree exponent, �=3,
as for the original BA network. We note an interesting fea-
ture of the magnetization curves in Fig. 1 that cross each
other at the transition point of the pure system, at Tc

�0�=2,
having a value of m�Tc

�0��=0.58, for any strength of disorder.
This property follows from the fact that for a given realiza-
tion of the disorder the optimal set at T=Tc

�0� only depends on
the sign of the sum of fluctuations of given couplings �cf.
some set of sites is connected �disconnected� to the giant
cluster only for positive �negative� accumulated fluctuations�
and does not depend on the actual value of 	�0.

We can thus conclude the following picture about the evo-
lution of the optimal set. This is basically one large con-
nected cluster with N sites, immersed in the sea of isolated
vertices. With increasing temperature more and more loosely
connected sites are dissolved from the cluster, but for
T�Tc we have N /N=m�T��0 and the cluster has the same
type of scale-free character as the underlying network. On
the contrary, above the phase-transition point, Tc

�0�+	�T
�Tc, the large cluster has only a finite extent, N�. The
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FIG. 1. �Color online� Temperature dependence of the average
magnetization in a BA network of N=1024 sites for different
strengths of the disorder, 	. At T=Tc

�0�=2 the magnetization is in-
dependent of 	�0 and its value is indicated by an arrow. Inset: The
average magnetization for uniform disorder, 	=2, close to the tran-
sition point for different finite sizes. The arrow indicates the critical
point of the infinite system.

0.0060.0060.0060.006

0.0040.0040.0040.004

0.0020.0020.0020.002

0.0000.0000.0000.000
3.03.03.03.02.02.02.02.01.01.01.01.00.00.00.00.0

TTTT

NNNN
m

s
m

s
m

s
m

s/
N/N/N/N

N=128N=128N=128N=128
N=256N=256N=256N=256
N=512N=512N=512N=512

N=1024N=1024N=1024N=1024

FIG. 2. �Color online� Fraction of intermediate size clusters as a
function of the temperature.

-0.0-0.0-0.0-0.0

-2.0-2.0-2.0-2.0

-4.0-4.0-4.0-4.0

-6.0-6.0-6.0-6.0

-8.0-8.0-8.0-8.0

-10.0-10.0-10.0-10.0

-12.0-12.0-12.0-12.0

-14.0-14.0-14.0-14.0
6.06.06.06.05.05.05.05.04.04.04.04.03.03.03.03.02.02.02.02.01.01.01.01.00.00.00.00.0

ln(k)ln(k)ln(k)ln(k)

PPPP
DDDD

(k
)

(k
)

(k
)

(k
)

[
]

[
]

[
]

[
]

lnlnlnln

T=0.0T=0.0T=0.0T=0.0
T=1.957T=1.957T=1.957T=1.957
T=2.464T=2.464T=2.464T=2.464
T=2.738T=2.738T=2.738T=2.738
T=2.816T=2.816T=2.816T=2.816
T=2.894T=2.894T=2.894T=2.894
T=2.972T=2.972T=2.972T=2.972
T=3.030T=3.030T=3.030T=3.030
T=3.089T=3.089T=3.089T=3.089
T=3.128T=3.128T=3.128T=3.128
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order of the transition depends on the way N behaves close
to Tc. A first-order transition, i.e., phase cooexistence at Tc,
does not fit the above scenario. Indeed, as long as N�N the
same type of continuous erosion of the large cluster should
take place, i.e., the transition is of second order for any
strength 	�0 of the disorder. Approaching the critical point
one expects the following singularities: m�T���Tc−T�
 and

N��T−Tc�−��. Finally, at T=Tc, the large cluster has N
�N1−x sites, with x=
 /��.

B. Distribution of the finite-size transition temperatures

The first step in the study of the critical singularities is to
locate the position of the phase-transition point. In this re-
spect it is not convenient to use the magnetization, which
approaches zero very smoothly, see the inset of Fig. 1, so that
there is a relatively large error by calculating Tc in this way.
One might have, however, a better estimate by defining for
each given sample, say �, a finite-size transition temperature
Tc�� ,N�, as has been made for regular lattices �25,26,31�.
For a network we use a condition for the size of the con-
nected component, N�T��AN1−x, in which x is the magne-
tization critical exponent and A=O�1� is a free parameter,
from which the scaling form of the distribution is expected to
be independent. The calculation is made self-consistently:
For a fixed A and a starting value of xs=x1, we have deter-
mined the distribution of the finite-size transition tempera-
tures and at their average value we have obtained an estimate
for the exponent, x=x2. Then the whole procedure is re-
peated with xs=x2, etc., until a good convergence is obtained.
Fortunately, the distribution function, p�Tc ,N�, has only a
weak x dependence; thus it was enough to make only two
iterations. We have started with a logarithmic initial condi-
tion, N�T��A ln N, which means formally x1=1 and we
have obtained x2=0.69. Then in the next step the critical
exponents are converged within the error of the calculation
and they are found to be independent of the value of A,
which has been set to be A=1, 2, and 3.

The distribution of the finite-size critical temperatures cal-
culated with x2=0.69 and A=3 are shown in Fig. 4 for dif-
ferent sizes of the network. One can observe a shift of the
position of the maxima as well as a shrinking of the width of
the distribution with an increasing size of the network. The
shift of the average value, T c

av�N�, is asymptotically given by

T c
av�N� − Tc�� � N−1/�̃�, �5�

whereas the width, characterized by the mean standard de-
viation, 	Tc�N�, scales with another exponent, ��, as

	Tc�N� � N−1/��. �6�

Using Eq. �5� from a three-point fit we have obtained �̃�
=3.8�2� and Tc��=3.03�2�. We have determined the posi-
tion of the transition point in the infinite system, Tc��, in
another way by plotting the difference T c

av�N�−Tc�� versus
N in a log-log scale for different values of Tc��; see Fig. 5.
At the true transition point according to Eq. �5� there is an
asymptotic linear dependence, which is indeed the case

around Tc��=3.03�2� and the slope of the line is compatible
with 1/ �̃�=0.27�1�.

For the width exponent, ��, we obtained from Eq. �6� with
two-point fit the estimate ��=5.6�2�. With these parameters
the data in Fig. 4 can be collapsed to a master curve as
shown in the inset of Fig. 4. This master curve does not look
symmetric, at least for the finite sizes used in the present
calculation, and can be well fitted by a modified Gumbel
distribution, G��−y�=�� /�����exp�−y−e−y���, with a pa-
rameter �=4.2. We note that the same type of fitting curve
has already been used in Ref. �35�. For other values of the
initial parameter, A=1 and 2, the estimates of the critical
exponents as well as the position of the transition point are
found to be stable and stand in the range indicated by the
error bars.

Equations �5� and �6� are generalizations of the relations
obtained in regular d-dimensional lattices �36–40� in which
N is replaced by Ld, L being the linear size of the system, and
therefore instead of �� and �̃� we have �=�� /d and �̃
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= �̃� /d, respectively. Generally at a random fixed point the
two characteristic exponents are equal and satisfy the relation
�41� ��= �̃��2. This has indeed been observed for the 2D
�31� and 3D �25,26� random bond Potts models for large q at
disorder induced critical points. On the other hand, if the
transition stays first-order there are two distinct exponents
�35,42�: �̃�=1 and ��=2.

Interestingly, our results on the distribution of the finite-
size transition temperatures in networks are different from
those found in regular lattices. Here the transition is of sec-
ond order but still there are two distinct critical exponents,
which are completely different from those at a disordered
first-order transition. For our system ����̃�, which means
that disorder fluctuations in the critical point are dominant
over a deterministic shift of the transition point. A similar
trend is observed about the finite-size transition parameters
in the random transverse-field Ising model �43�, the critical
behavior of which is controlled by an infinite disorder fixed
point. In this respect, the RBPM in scale-free networks can
be considered a different realization of an infinite disorder
fixed point.

C. Size of the critical cluster

Having the distribution of the finite-size transition tem-
peratures we have calculated the size of the largest cluster at
Tc

av�N�, which is expected to scale as N�N ,Tc
av�N���N1−x.

Then from a two-point fit we have obtained an estimate for
the magnetization exponent: x=0.66�1�. We have also plotted
N�N ,Tc

av�N�� versus N1−x in Fig. 6 for different initial param-

eters A. Here we have obtained an asymptotic linear depen-
dence with an exponent, x=0.65�1�, which agrees with the
previous value within the error of the calculation.

V. DISCUSSION IN TERMS OF OPTIMAL COOPERATION

In this paper, we have studied the properties of the Potts
model for large values of q on scale-free evolving complex
networks, such as the BA network, both for homogeneous
and random ferromagnetic couplings. This problem is
equivalent to an optimal cooperation problem in which the
agents try to optimize the total sum of the benefits coming
from pair cooperations �represented by the Potts couplings�
and the total sum of the support which is the same for each
cooperating project �given by the temperature of the Potts
model�. The homogeneous problem is shown exactly to have
two distinct states: Either all the agents cooperate with each
other or there is no cooperation between any agents. There is
a strong first-order phase transition: By increasing the sup-
port the agents stop cooperating at a critical value.

In the random problem, in which the benefits are random
and depend on the pairs of the cooperating agents, the struc-
ture of the optimal set depends on the value of the support.
Typically the agents are of two kinds: A fraction of m be-
longs to a large cooperating cluster, whereas the others are
isolated, representing one man’s projects. With increasing
support more and more agents are split off the cluster, thus
its size, as well as m, is decreasing, but the cluster keeps its
scale-free topology. For a critical value of the support, m
goes to zero continuously and the corresponding singularity
is characterized by nontrivial critical exponents. This transi-
tion, as shown by the numerically calculated critical expo-
nents for the BA network, belongs to a new universality
class. One interesting feature of it is that the distribution of
the finite-size transition points is characterized by two dis-
tinct exponents and the width of the distribution is dominated
over the shift of the average transition point, which is char-
acteristic at an infinite disorder fixed point �43�.
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